Computer-assisted pattern recognition of autoantibody results.

نویسندگان

  • Steven R Binder
  • Mark C Genovese
  • Joan T Merrill
  • Robert I Morris
  • Allan L Metzger
چکیده

Immunoassay-based anti-nuclear antibody (ANA) screens are increasingly used in the initial evaluation of autoimmune disorders, but these tests offer no "pattern information" comparable to the information from indirect fluorescence assay-based screens. Thus, there is no indication of "next steps" when a positive result is obtained. To improve the utility of immunoassay-based ANA screening, we evaluated a new method that combines a multiplex immunoassay with a k nearest neighbor (kNN) algorithm for computer-assisted pattern recognition. We assembled a training set, consisting of 1,152 sera from patients with various rheumatic diseases and non-diseased patients. The clinical sensitivity and specificity of the multiplex method and algorithm were evaluated with a test set that consisted of 173 sera collected at a rheumatology clinic from patients diagnosed by using standard criteria, as well as 152 age- and sex-matched sera from presumably healthy individuals (sera collected at a blood bank). The test set was also evaluated with a HEp-2 cell-based enzyme-linked immunosorbent assay (ELISA). Both the ELISA and multiplex immunoassay results were positive for 94% of the systemic lupus erythematosus (SLE) patients. The kNN algorithm correctly proposed an SLE pattern for 84% of the antibody-positive SLE patients. For patients with no connective tissue disease, the multiplex method found fewer positive results than the ELISA screen, and no disease was proposed by the kNN algorithm for most of these patients. In conclusion, the automated algorithm could identify SLE patterns and may be useful in the identification of patients who would benefit from early referral to a specialist, as well as patients who do not require further evaluation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer-Assisted Instruction (CAI), Virtual Patients (VP), and Human Patient Simulation (HPS) in Medical Education Based on Gagne’s Educational Design Pattern

Background and objectives: Educational technology is widely used in all parts of medical education. The use and application of common educational technologies and adoption of educational design patterns in medical sciences education can greatly help in medical simulations, training, and improving of clinical skills of nurses and medical students. The aim of this research was to study computer-a...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

Face Recognition by Cognitive Discriminant Features

Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...

متن کامل

Classifier Ensemble Framework: a Diversity Based Approach

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...

متن کامل

AN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION

A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical and diagnostic laboratory immunology

دوره 12 12  شماره 

صفحات  -

تاریخ انتشار 2005